
NRL Report 8268

Evaluating Software Development by Error Analysis:
The Data From the Architecture Research Facility

DAVID M. WEISS

Information Systems Staff
Communications Sciences Division

December 22, 1978

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (When Del, En.er.d)

READ INSTRUCfIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 8268 l

4. TITLE (and Subtitli) S. TYPE OF REPORT & PERIOD COVERED

EVALUATING SOFTWARE DEVELOPMENT BY ERROR Interim report on one phase of a
ANALYSIS: THE DATA FROM THE ARCHITECTURE continuing NRL Problem
RESEARCH FACILITY 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(e)

David M. Weiss

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
AREA & WORK UNIT NUMBERS

Naval Research Laboratory NRL Problem 54B02-18
Washington, D.C. 20375' 62721N XF21-241-021

I 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Electronic Systems Command December 22, 1978
Washington, D.C. 20360 13. NUMBER OF PAGES

23
14. MONITORING AGENCY NAME & ADDRESS(If different Iron, Controlling Office) IS. SECURITY CLASS. (of thie report)

UNCLASSIFIED
IFa. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and identify by block number)

Architecture Research Facility Software errors
Computer programming Software error analysis
Software
Software engineering

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

In software engineering, it is easy to propose techniques for improving software development
but difficult to test the claims made for such techniques. This report suggests an error analysis tech-
nique for use in gathering data concerning the effectiveness of different software development meth-
odologies. The principal features of the error analysis technique described are formulating questions
of interest and a data classification scheme before collection begins, and interviewing of system de-
velopers concomitant with the development process to verify the accuracy of the data. The data
obtained by using this technique during the development of a medium-size software development

(Continued)
FORM DD JAN 7 1473 EDITION OF I NOV 65 IS OBSOLETE

S/N 0102-014-6601
SECURITY CLASSIFICATION OF THIS PAGE (When Det- Entered)

-

i

_LtLIJHITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued)

project are presented. This project was known as the Architecture Research Facility (ARF)
and took about 10 months and 192 man-weeks of effort to develop. The ARF designers used
the information-hiding principle to modularize the system, and interface specifications and
high-level language coding specifications to express the design. Several error-detection aids
were designed into the system to help detect run-time errors. In addition, quality control rules
were established that required specification review before coding, and code review after com-
pilation but prior to testing. A total of 143 errors was reported. Analysis of these errors
showed. that there were few problems caused by intermodule interfaces, that error corrections
rarely required knowledge of more than one module, that most errors took less than a few
hours to fix, and that error-detection aids detected more than half the errors that were poten-
tially detectable by them.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ii

CONTENTS

INTRODUCTION .. 1

THE ARF PROJECT .. 2

Design Goals .. 2
Approach to Achieving Goals ... 3
Development Organization . .. 4

ERROR ANALYSIS: ANSWERING QUESTIONS OF INTEREST 6

Users of Error Data ... 8

ARF ERROR DATA .. 8

Error Classification .. 8
Reporting Requirements .. 9
Accuracy Checks .. 9

ARF ERROR ANALYSIS ... 9

Errors Related to Modularization .. 10
Methods of Error Detection .. 12
Error-Correction Effort and Methods .. 13
Limitations and Problems .. 15

CONCLUSIONS ... 17

ACKNOWLEDGMENTS ... 17

REFERENCES ... 17

APPENDIX - Modules of the ARF .. 19

iii

EVALUATING SOFTWARE DEVELOPMENT BY ERROR ANALYSIS:
THE DATA FROM THE ARCHITECTURE RESEARCH FACILITY

INTRODUCTION

In science, one usually proposes a hypothesis, performs an experiment to gather data,
then uses the data to verify or discredit the hypothesis. Unfortunately, in software engineering
it is remarkably easy to propose hypotheses, and remarkably difficult to test them. Accordingly,
it is useful to seek methods for testing software engineering hypotheses. This report describes
one such technique and presents the data obtained from its use in a medium-size software
development project. We restrict our attention to the area of software development methodolo-
gies, and show how one may gather data concerning the effectiveness of different methodolo-
gies in producing correct software. The technique discussed here is based on collecting data
concerning errors. The kind of data to be gathered is established at the start of development,
and data gathering proceeds in parallel with development. The kind of data needed and the
analysis performed on the data depend on the claims made for the methodology being used.

Later sections of this report describe in greater detail the steps to be taken to evaluate a
methodology by error analysis. It should already be evident, however, that a true experimental
evaluation will not result. There is no control group, possible confounding factors are neither
neutralized nor eliminated, and statistical hypothesis testing is not likely to be useful. Nonethe-
less, there is still much to be gained from the kind of evaluation we suggest. One can discover
limitations and advantages of various techniques with respect to error prevention, detection,
and repair. An additional benefit is that one can gain a great deal of insight into the software
development process. The kinds of activities going on at different stages of the development
cycle become apparent. The more troublesome or time-consuming an activity is, the more visi-
ble it becomes.

The error analysis technique described here was tested on an in-house software develop-
ment project at the Naval Research Laboratory. The purpose of the project was to develop a
facility for simulating different computer architectures, to be known as the Architecture
Research Facility (ARF). The function of the ARF is described in the next section.

Besides producing a working simulator, the ARF designers had specific goals for their
design. They were careful to select design techniques that they felt would help to achieve those
goals. The first section contains a discussion of both the design goals and the design tech-
niques. The error data that were collected permitted the designers to have some measures of
the effectiveness of the techniques they used. The approach to obtaining the error data is dis-
cussed in the second section, and the third section is a discussion of the results of the data col-
lection and analysis. The shortcomings of error analysis and the problems encountered in col-
lecting and analyzing data are described in the fourth section. Finally, some conclusions that
can be drawn about the ARF project and the usefulness of error analysis in evaluating software

Manuscript received July 21, 1978.

1

D.M. WEISS

development methodologies are presented in the fifth section. Readers interested only in a dis-
cussion of the techniques involved in data collection and analysis should read the second, third,
and fifth sections. Those interested in the ARF data should read the first and fourth sections.

The author was not involved at any time in the actual development of the ARF. He was
only involved in the collection and analysis of the error data.

THE ARF PROJECT

The purpose of the ARF project was to develop a facility for simulating different com-
puter architectures based on a description of the target architecture written in the Instruction
Set Processor (ISP) language [1]. Different computer architectures may be evaluated by run-
ning programs on the simulated computers. The ARF enables the user to monitor the simula-
tion interactively, allowing him to observe, at his option, the state of selected components of
the target computer. As an example, a user wishing to simulate a general register machine
might want to run a matrix-inversion program, observing the number of memory fetches, addi-
tions, multiplications, and total instructions executed.

A complete description of the structure of the ARF simulator is available elsewhere [21,
and is not needed here. Briefly, to simulate a machine, the ARF uses a set of tables used to
describe the machine being simulated and its state, a module to perform instruction simulation,
and a module to handle the interface to the user. The machine description contained in the
tables is produced by an ISP compiler (written at Carnegie-Mellon University).

The ARF was developed by a team of nine people (excluding consulting and secretarial
support), eight of whom did not participate full time over the entire development phase. There
were five principal designers, one of whom doubled as project manager and some of whom also
coded, and two principal coders. The remaining two people did some minor design and coding,
and one provided a test and debug support package. Secretarial support ranged from one to
four people, as needed. During the early design period, there was one consultant who strongly
influenced several major design decisions. The ARF took about ten months and 192 man-
weeks, exclusive of consulting and secretarial support, to develop. During this time, various
designers and coders joined and left the project.

Design Goals

The primary goal of the ARF designers was to produce a working simulator that would
permit the simulation of small target-machine programs. The simulator was expected to be fast
enough to run in an interactive mode, so that the user could see results of the simulation
without having to wait for completion of a batch job. By the time the design was completed,
the following additional goals had been added.

* Rather than developing the whole system at one time, the ARF was to be done using
the family approach to software development [31. The system would be built in three main
stages. Each stage would produce a member of the ARF "family" of programs, providing
different facilities.

* The information-hiding principle [4] was to be applied to conceal design decisions that
were expected to change during the lifetime of the ARF. As an example, early in the design

2

NRL REPORT 8268

stage, it was expected that two different versions of the ARF would be developed: initially, one
to run on a PDP-10, and later one to run on a PDP-11. Table sizes and structures were
expected to be markedly different between the two versions. Information hiding was expected
to ameliorate the problems in producing two consistent versions. Although planned, the move
to the PDP-II was never attempted. As a result, the effectiveness of the design in aiding tran-
sportability cannot be assessed.

* At the possible expense of some run time performance, several debugging aids were
designed into the system to make development easier. These included

a. A method for detecting errors involving improper access to table entries,

b. A consistent execution-time error reporting scheme for table interface functions that
preserved the name of the routine in which the error occurred and reported a code associated
with the error, and

c. A mechanism for inserting, and turning on and off, debugging code through the use of
a compile-time preprocessor.

The family approach is mentioned as an example of a technique that could not be
evaluated by error analysis as described here. As a result, further elaboration of the ,ARF fam-
ily will be omitted. The following sections contain a more complete description of the applica-
tion of information hiding and the ARF debugging aids.

Approach to Achieving Goals

Understanding of parts of the error analysis requires some knowledge of how the ARF
was designed. A brief description of the approach taken to achieving the design goals is given
here.

Modularization Considerations

The ARF was modularized in a conscious effort to hide certain design decisions. Some
decisions hidden were the structure of the tables used to store target-machine operations and
the state of the target-machine (hereafter referred to as the descriptor tables), the representa-
tion used by the ISP compiler for the object code it produced, and the implementation of the
user interface. (The appendix contains a short description of the eight ARF modules and the
design decisions hidden in each.) One example is the table access module, which was designed
to conceal the implementation of the descriptor tables. Access to table entries was provided by
a set of table interface functions contained in the table access module. These functions were
the only ARF routines containing references to the variables used to implement the tables.
Routines in other modules needing access to table entries had to use the table interface func-
tions for such access.

Binding Mechanism and Table Interface Functions

In the interests of decreasing debugging time and difficulty, a special mechanism was
designed and implemented to detect some types of improper access to descriptor table entries.
This mechanism, known as the binding mechanism, was used by routines not belonging to the

3

D.M. WEISS

table access module. The mechanism consisted of an implementation of a set of rules defining
the legality of referencing table entries. No more than one entry in each table could be refer-
enced at any time. The entry to be referenced had to be declared before any reference
occurred. The operation of declaring an entry to be referenced was known as binding (freeing
the entry was unbinding), and the declared entry was known as the bound entry. Binding and
unbinding were accomplished by calling special table interface routines designed for the pur-
pose. An error was generated any time access was attempted to a table entry that was not
bound.

Error-Reporting Mechanism

Improper binding errors were only one class of errors expected to occur that involved
table access. Because there were several different tables and many different table entry types, a
consistent scheme for reporting errors involving table interface functions was used. Each table
interface function returned a parameter containing an error code. The value of the parameter
denoted the function in which the error was discovered and identified the type of error. Func-
tion identifiers and standard error types were contained in a parameter file that was accessed at
compile time through the use of the preprocessor. The error reporting mechanism was expli-
citly designed to facilitate debugging and testing of the ARF. All ARF programs were written
so that the error reporting mechanism could be turned off without affecting the results of using
the ARF. When the mechanism was turned off, simulation speed increased by about a factor
of 2.

Preprocessor

The ARF programs were written in ANSI standard FORTRAN on a PDP-10. Because the
standard lacked some features wanted by the ARF developers, a preprocessor was written to
extend the language's capabilities. The three main capabilities provided by the preprocessor
were compile-time inclusion into programs of previously defined files, special identification of
debug code (the programmer could use the preprocessor to convert all code identified as debug
into either comments or standard FORTRAN statements), and substitution of constants for
identifiers (permitting the use of names for compile-time constants).

Development Organization

Figure 1 is a calendar of development time for each module in terms of design, coding,
and testing. Once the basic modular structure of the ARF was established, the usual procedure
followed for each module was to produce and review a series of design documents. The initial
document(s) named and informally described the functions and data structures that composed
the module, and defined the module's interface to its users. After this basic design was
reviewed and found acceptable by all other designers, high-level language coding specifications
were written for each function of the module. Each coding specification was reviewed by a
designer other than its author prior to being released for coding. Typically, two to four versions
of the design and interface specifications were produced before the coding specification was
written, and two to four versions of the coding specifications were produced before coding
started. FORTRAN code was written from the coding specifications, compiled, and then
reviewed by someone other than the coder. After the code review, the coder debugged the
routines he wrote, and delivered them for testing. A tester, usually other than the coder or
designer, was then selected. As development proceeded and design changes were made, the

4

O MODULE DEVELOPMENT START
D MODULE DESIGN COMPLETE
C MODULE CODING COMPLETE

& MODULE DEVELOPMENT COMPLETE

z

;0
tTj

0003
x0

x~

NOTE: WORK WAS SUSPENDED ON THE PAGING MODULE FOR A PERIOD OF TIME.

Fig. I - ARF development calendar

fli. HSV11)WlNn

1975 1976

SEPT. OCT. NOV. DEC. JAN. FEB. MAR. APR. MAY JUNE JUL. AUG.
_ ~~~~~~D C

REFORMATTER _ = _

SIMULATOR D

COMMAND-LANGUAGE C
INTERPRETER

TABLE ACCESS -D- - -A

D C
PAGING _ _

PREPROCESSOR 0-

D.M. WEISS

design and coding specifications were updated. Eight or nine versions of some documents were
eventually produced. These procedures were followed for the major modules of the ARF. The
utility routines and the preprocessor did not undergo this process. The preprocessor was writ-
ten in SNOBOL as a single program, and some of the utilities, such as the byte-handling rou-
tines, were written in assembly language.

The final version of the ARF, excluding the ISP compiler, contained 253 routines and
21,831 lines of source code, of which 11,796 were comments. Most of these routines were
coded in FORTRAN, with the aid of the preprocessor to include common blocks, global param-
eter files, and debug code. The coding, debugging, and testing were all done interactively on a
PDP-10 computer. The FORTRAN language was used because it was considered most tran-
sportable to the PDP-11 (recall that an early goal of the project was to produce a version of the
ARF for both machines). The coding standards [5] used for the project established ANSI FOR-
TRAN as the standard ARF language. Coding specifications were all written in high-level
languages, with the choice of language for any particular module left to the author of the
specification. Three languages were chosen for this purpose: SIMPL-TA6], BLISS [7], and an
ALGOL-like language devised by one of the designers for his use. The project manager had
exclusive, on-line access to a library of source and object code for tested ARF routines. The
documentation, also on-line, was kept current with the library. More details of the develop-
ment methodology and project management can be found in Ref. 2.

ERROR ANALYSIS: ANSWERING QUESTIONS OF INTEREST

Much of the effort involved in applying error analysis comes before and during the
development of the software under study. Before development begins, the questions of interest
to the study must be formulated, a data classification scheme must be selected, a questionnaire
for data collection must be devised, and the subjects involved should be trained in filling out
the questionnaires. During the development stage, the error analyst(s) must review each ques-
tionnaire for consistency, completeness, and accuracy. If there is doubt about the appropriate
classification of errors, or if data are incomplete or inconsistent, the developers involved must
be interviewed.

A number of different suggestions for selecting error classification schemes exist in the
literature [8-121. The scheme chosen should be based on the questions of interest. Postponing
definition of the scheme until most data have been collected may cause a number of interesting
questions to be left unanswered. As an example, if one is concerned with the utility of code
reading in producing reliable software, pertinent data to be collected for each error consists of
the method used for the detection of that error. If this information is not collected during the
development process, it is unlikely that one will be able to discover the number of errors
detected by code reading.

Once a classification scheme is defined, it is possible to devise a questionnaire to collect
data of interest. Questionnaire design is an art that has been much discussed elsewhere [13]
and will not be treated here. We only mention that the original ARF questionnaire design,
driven by considerations of completeness, was 11 pages long. The version in use by the end of
the project was 2 pages (Fig. 2).

As part of collecting data and training the people involved, procedures for collecting data
must be established. The definitions of error and error correction, the kinds of errors to be

6

NRL REPORT 8268

CHANGE REPORT

PROJECT

NEED FOR CHANGE DETERMINED DATE

REASON

NUMBER __ _

CURRENT DATE ____

What modules/subroutines were examined when it became evident that a change was needed?

CHANGE MADE DATE

DESCRIPTION (Please attach listing)

What subroutines/modules are changed (include version and line numbers)

The time required to design the change was_ one hour or less, _ one hour to one day, - more than one day.

Was the change made to correct an error: No - answer questions in Sections A, C
Yes - answer questions in Sections B, C

SECTION A
What is the change caused by and what does it affect?

Caused By
Can't Tell Change In Affects Name(s)/References

Requirements/Specifications
Design
Hardware Environment
Software Environment
Optimization
Other (Specify):
Other (Specifyl:

SECTION B
Number of run analysis form for run where error first noticed

What were the activities used in detecting the error and its cause:

Activities Activities Activities
Used for Error First Tried to Successful in

Detection Detected By Isolate Cause Isolating Cause
Test Rut
Code Reading by Programmer
Code Reading by Other Person
Reading Documentation (documents:
Proof Technique: (method: _

Trace: (type:
Dump
Cross-Reference
Attribute List
Special Debug Code

Error Messages General
Project Specific

Inspection of Output
Other (Specify):
Other (Specify):
Other (Specify):

580-2 (2/77)

Fig. 2 - Change Report Form

7

D.M. WEISS

Was this error related to a previous modification? Yes (Change Request #:

No _ Can't Tell
The time used to isolate the cause was-one hour or less, _ one hour to one day, -more than one day.

Cause not found
Was a workaround used? Yes

No (explain:
Was it a clerical error? - Yes - No.
If not a clerical error, which aspects of the system were incorrect or misinterpreted?

Name(s)
Can't Tell Incorrect Misinterpreted References

Requirements
Functional Specifications
Other Documents (Specify: _

Intended Use of Segment/Proc/Module
Design Value or Structure of Data

Other (Specify:)_

Interface

Programming Language Syemnt

Hardware Environment
Software Environment
Other (Specify):

When did the error enter the system? - Requirements _ Functional Specs
_ Coding & Test - Other

- Design
- Can't Tell

SECTION C

Please give any information that may be helpful in categorizing the change, understanding its cause, how it was found, and its
ramifications.

Person Filling Out This Form:

Date: __

580.2 (2/77) Continuation

Fig. 2 (Continued) - Change Report Form

8

NRL REPORT 8268

reported, and the times at which errors are to be reported must be made clear to all involved.
In large development projects there are usually formal procedures for updating program
libraries. These procedures can be used by error analysts to account for all changes, and hence
all corrections, to programs already in the library.

Users of Error Data

The analyses discussed in the ARF Error Data section show some kinds of information
that can be derived from historical error data. They were selected as examples because they are
of interest to a variety of people involved in software development. As examples, a project
manager might be interested in the overall success of the development methodology and the
phase(s) of the development cycle that are most troublesome; a system designer might be
interested in whether or not he achieved his design goals; a software engineer might be
interested in the effectiveness of the design methodology and in the techniques found useful
for finding and correcting errors; a programmer might be interested in the most effective error-
detection techniques; and an error analyst might be interested in knowing major sources of
errors, the success of techniques specifically designed to detect and correct errors, and error
rates. Other analyses thaf were or could be performed on the ARF error data have not been
reported here because results were either inconclusive or unreliable. These include calculating
the fraction of errors that occurred in each ARF module, the fraction of errors detected by vari-
ous techniques before testing or coding began, and the number of errors detected at design
time that would have been detected by the error-detection and -reporting mechanism.

ARF ERROR DATA

Error Classification

The classification scheme used in collecting and analyzing ARF error data was defined at
the start of ARF development and refined somewhat during the design phase. The scheme was
defined so that information concerning the methodology and the success or failure of the design
would be available for analysis after collection of the data. The issues of interest were the use-
fulness of interface and coding specifications, of code reading for error detection, and of the
built-in error-detection mechanisms. The success in achieving design goals was assumed to be
related to the number of errors involving module interfaces (related to the use of information-
hiding and interface specifications), the fraction of errors involving specifications, the fraction
of errors detected by code reading, the fraction of errors detected and reported by the error-
reporting mechanism, the fraction of errors associated with improper binding, and the difficulty
of correcting errors. Also of interest were the number of attempted corrections for each error,
and the misunderstandings involved in different errors. More detailed discussions of these
parameters will be presented later in this section.

The ARF was not sufficiently big to warrant the use of formal change procedures, and
designers and programmers were relied on to report their own errors. The only available
checks on this process were revisions to the interface and coding specifications, which were
published as needed, and the awareness of project management of the day-to-day progress of
the development effort. Since the project manager and her supervisor were both involved in
the design and specification of the ARF, and approved all design changes, their support and
example in reporting errors were invaluable (the error analysis project received strong support
from ARF project management during the entire development period). Newly hired coders

9

D.M. WEISS

were informed when they started work that error reporting was considered part of their duties.
Furthermore, error data were never used in assessing programmer efficiency or competence,
and no attempt to allocate blame for committing errors was ever made.

Reporting Requirements

Error reporting for the purposes of error analysis was required on all modules except the
ISP compiler, which was not developed at NRL. An error was considered to be a discrepancy
between a specification and its implementation. Specifications included requirements, design,
interface and coding specifications, coding standards, and program documentation. All errors
were expected to be reported when the error was corrected (no cases occurred where there was
a delay of more than about a week between error detection and error correction). For
specification and design errors prior to coding this was when a correction to the appropriate
document was ready to be submitted. For errors requiring code changes this was when a
change to the library was ready. The only errors not required to be reported were certain
classes of clerical errors, such as misspellings resulting from keypunch errors and simple syntac-
tic errors such as mismatched parentheses and omitted commas. Although these errors were not
required to be reported, coders were encouraged to report them (one result of this policy was
that there were more errors in the clerical category than any other).

Accuracy Checks

Each error report was examined by an ARF error analyst after submittal. If there.was any
question concerning the circumstances of the error and its detection, or the categorization of
the error, the person who completed the error report form was interviewed by the error analyst.
This policy was an attempt to ensure consistent categorization of errors. In addition, at the end
of the ARF development, an ARF programmer reviewed all the error reports for accuracy and
consistency of categorization.

ARF ERROR ANALYSIS

Although there is no good way to measure the success of the error reporting procedures,
we believe that nearly all errors found at the coding specification stage or beyond were reported.
We have less confidence that all design errors found prior to writing coding specifications were
reported. Careful monitoring of errors did not start until December 1975. Some design errors
were found and corrected in design review meetings held prior to December for which no writ-
ten records exist. Furthermore, it was sometimes difficult to distinguish between design
improvements and design errors. The first error was reported in early January 1976, and was
an error in translating coding specifications to code. The last error was reported in April 1977,
and was a data type error originating in a coding specification.

A total of 143 errors was reported during the development and use of the ARF through
July, 1977 (one year after the end of development). The data collection scheme used allows
the errors to be categorized according to methods of detection, sources of misunderstanding,
module of occurrence, relationship to previous modifications, difficulty of correction, and size
of erroneous subroutine (if applicable). The following sections discuss the different categoriza-
tions with regard to the questions of interest described in the section on error data.

10

NRL REPORT 8268

Errors Related to Modularization

The effectiveness of a particular modularization strategy is difficult to measure directly.
Based on the claims for the information hiding approach, it was assumed that the goodness of
the ARF's modular structure was correlated with the following measurable factors:

* The percentage of errors resulting from interface misunderstandings

* The effort involved in fixing interface misunderstandings

* The percentage of erroneous changes

* The percentage of errors that required an understanding of several ARF modules to
correct or that required corrections to be made in several modules.

Table I is a categorization of ARF errors according to the misunderstanding that was the
source of the error. (For completeness, clerical errors and careless omissions, which are not
misunderstandings, are also shown.) An error is classified as a misunderstanding if it is a result
of an incorrect assumption. As an example, one error resulted from a programmer's assuming
that the ARF user input routines removed delimiters from character strings containing user
commands. This assumption was false, and resulted in one type of user command being
rejected as invalid. About half (54%) of ARF errors were the result of a misunderstanding of
requirements, design, interface, coding specifications, a language (including FORTRAN, the
ARF preprocessor, a specification language used in writing coding specifications, or the text edi-
tor used to enter source code), or of the ARF FORTRAN coding standards. Most of the
remainder (39%) were clerical errors, and there were some (10%) careless omissions that could
not be classified as misunderstandings. (Typical careless omissions were omitted declarations of
variables, common blocks, or files, either in the source code or in a coding specification. In
these cases the coder or designer realized that the declaration was needed but forgot to include
it when writing the code or specification.) The interface between modules consists of the
assumptions made by the modules about each other. An interface error is then an incorrect
assumption about one module by another. Examples of ARF interface errors are subroutines
of one module called by subroutines of another module in circumstances that violated the
former's specifications (e.g., improper reinitialization call or incorrect choice of data conversion
routine), use of incorrect calling sequences between subroutines of different modules, and
unexpected argument values returned from a subroutine.

Table I - Misunderstandings as Sources of Errors

Percent of
Category Number of Errors Total Errors

Requirements 8 6
Design 27 19
(excluding interfaces)

Interface 9 6
Coding specifications 18 13
Language 12 8

Careless omission 14 10
Coding standards 3 2
Clerical 52 36

11

D.M. WEISS

Two areas often considered to be the most troublesome, requirements and interfaces,
were among the smallest sources of misunderstandings. These two categories together
comprised 12% of the total errors. Furthermore, when the effort involved in fixing (finding the
cause of and correcting) an error is considered (see Table 2), all but one of the interface
misunderstanding errors were rated easy (i.e. took less than a few hours) to fix. Misunderstand-
ings of requirements, although small in number, were more difficult to fix than other error
types. (Difficulty of error correction is analyzed in more detail in a later section.) Most of these
errors involved a misunderstanding of the semantics used by the ISP compiler.

Table 2 - Effort Involved in Fixing Errors

Effort to Fix
Easy Medium Hard

Category of Misunderstanding (less than (a few hours (more than a
a few hours) to a few days) few days)

Requirements 4 3 1

Design 19 8 0
(excluding interface)

Interface 8 1 0

Coding specifications 14 4 0
Language 9 3 0
Careless omission 13 1 0
Coding standards 3 0 0
Clerical s0 2 0

Additional analysis of the ARF errors, not reflected in the tables, shows that there were
eight errors (6% of the total) for which determining the cause required understanding of more
than one module. By "understanding" we mean that the error corrector had to know some of
the details of how the modules operated. As an example, one assumption made in the design
of the simulator module was that the minus sign always denoted a binary operator. This
assumption was incorrect for some cases and resulted in an error. To determine the cause of
the error it was necessary to know some of the details of how code was generated by the ISP
compiler. In each of the 8 cases, designing and implementing the correction required under-
standing of only one module.

Unfortunately, aside from error corrections, no record of modifications made to the ARF
was kept, so no complete measure of the number of errors committed in making changes is
available. Examination of the errors does show that only one error was the result of an error
correction, and that 11 errors (8% of the total) resulted from a change made for different rea-
sons.

Four measures related to modularization have been calculated in the foregoing: errors
resulting from interface misunderstandings, effort involved in fixing interface misunderstand-
ings, errors whose cause determination required an understanding of more than one module,
and errors committed in making error corrections. The values of these measures tend to indi-
cate that information needed to modify routines was local to modules, and that interfaces
between modules were easy to understand.

12

NRL REPORT 8268

Methods of Error Detection

The ARF developers paid much attention to issues involving error detection. The rules
established for writing and reviewing design, interface, and coding specifications and code were
designed to find errors as early as possible. The table access module, which contained the most
complex data structure and which was expected to change most during the lifetime of the ARF,
had special error-detection and -reporting mechanisms built into it. Table 3 is a summary of
errors according to the method of discovery. As previously noted, we believe that there were
unreported design and specification errors that occurred early in the project's development
phase. As a result, the number of errors detected by reading specifications or code (29%) must
be considered a lower bound.

Table 3 - Methods of Error Detection

Category Number of Errors Total Errors

Detected from program execution 58 40
Detected by reading code 41 29

or specifications
Other (FORTRAN compiler, 44 31

preprocessor, etc.)

Review of Specifications and Code

Errors detected by reading specifications or code can be further categorized as shown in
Table 4. As shown, most of these errors were detected by "quality control" inspections. Recall
that the "quality control" rules for the ARF required that all coding specifications and code
undergo a quality control inspection. Since all ARF errors must be viewed as potentially detect-
able by these means, in terms of numbers of errors the quality control rules do not appear
especially effective, detecting only 17% of all errors (all of which were easy to fix). The more
traditional method of running the program to find errors appears to have been the most
effective, since 40% of all errors were detected as a result of program execution. It is important
to note, however, that all but one of the errors discovered by reading code or specifications
were easy to fix, whereas 21 (36%) of the errors detected by program execution were medium
or hard to fix. The usefulness of the quality control rules is predicated on early detection and
correction of errors. Evaluation of that usefulness depends on knowing the cost of not using the
rules. The evaluation could be done by assuming that quality control inspections were not used
and determining the cost of fixing the 24 errors that were found by such inspections. This
requires knowing (or estimating) when those errors would have been detected and how much
effort then would have been involved in fixing them. We did not feel it~was possible to esti-
mate that effort accurately.

Error Detection Mechanism

Evaluating the error detection and binding mechanisms requires examining just those
errors that were potentially detectable by those mechanisms. As shown in Table 5, 43% of the
errors detected by executing the program involved access to the descriptor tables. More than

13

D.M. WEISS

Table 4 - Errors Detected by Reading Specifications or Code

Category Number of Errors Percent of

The original programmer in 7 5
"considering his program"

A "quality control" inspection 24 17
by someone other than the
original programmer

Inspection by someone other 7 5
than the original programmer
for some purpose other than
quality control

During translation from 3 2
specifications to code

Table 5 - Errors Detected by Error-Handling
(and Binding) Mechanism

Category Number of Errors Percent of
Total Errors

Not involved in table 33 23
access

Involved in table access 11 7
but not detected by
error handler

Involved in table access 14 10
and detected by
error handler*

*Of these, 13 were detected by the binding mechanism.

half (56%) of these were reported by the error handling mechanism. All but one of the errors
reported in this way were detected by the binding mechanism. On the other hand, two errors
detected by improper binding were created by the binding mechanism itself, i.e. they were cases
where the attempted table access was proper, but the appropriate binding operation had been
omitted. Finally, of the 58 errors detected at execution time, 24% were reported by the error
handler (22% by the binding mechanism part of the error handler). Based on this analysis, the
built-in error detection mechanisms seemed quite effective in detecting table access errors,
which comprised slightly less than half of the errors detected by running the program.

In summary, the run-time error-detection mechanism detected more than half of the table
access errors. Because the cost savings associated with the quality control rules cannot be accu-
rately estimated, it is not possible to judge their utility, but only note that they were responsible
for early detection of 17% of the errors, all of which were easy to fix.

Error-Correction Effort and Methods

The amount of effort that should be and is expended in testing is a topic of considerable
debate in the literature [14,15]. An important factor in estimating test effort is the difficulty of
correcting errors. This factor might also be used as a qualitative indicator of the success of the

14

NRL REPORT 8268

project's development methodology. For each ARF error reported, an estimate of the difficulty
of fixing (i.e., finding the cause of and correcting) the error was requested. The categories used
were easy (took less than a few hours), medium (a few hours to 'a few days), or hard (more
than a few days). Table 6 gives the distribution of errors according to difficulty to fix. Only
one error required more than a few days to fix. The easy-to-fix errors constituted 84% of the
total number. Of the medium-rated errors, at least half took a day or less to correct (there is
insufficient information available to determine whether or not the other half took more than
one day). It has been noted that the later in the development cycle an error is found, the
harder it is to correct. In an attempt to verify this for the ARF, the difficulty of correction of
errors was compared with the dates on which they were first observed. All but one of the
errors rated medium and hard found during development were discovered in the last month
(last 10%) of development. Most of this time was spent in integration testing. (The one
medium-rated error found earlier was related to a misuse of the text editor used for entering
source code, and had nothing to do with the design or implementation of the ARF.) During
this period, nine errors rated easy were also found. Unfortunately, one cannot conclude from
this that it was the late discovery of these errors that made them difficult to correct, but can
only note the correlation. Further analysis into the nature of the difficult-to-fix errors is
necessary before conclusions as to cause may be drawn.

Table 6 - Difficulty of Fixing Errors

Percent ofCategory Number of Errors Total Errors

Easy 120 84
(less than a few hours)

Medium 22 15
(a few hours to a few days)

Hard 1 1

(more than a few days)

In addition to difficulty of correction, methods of error correction were also analyzed. For
each error, the method of determining both the reason and required fix for the error were
requested. Any combination of the following four categories was allowed: study of the algo-
rithm in the documentation, inspection of code, running test cases, and other. This request
was answered for all but 27 of the errors (24 of these 27 were spelling errors in identifiers prob-
ably caught by a compile-time diagnostic). Table 7 shows the results of this categorization.
After inspection of code, study of the documentation (other than comments in the code) was
the most popular technique. This reflects the effort made to keep the documentation current
and useful. Some responses in the "other" category were executing code by hand, compilation
output, discussion with ISP compiler designer, use of special debugging code, and dump read-
ing. It is significant to note that only once was a dump needed, and only once was the debug-
ging code inserted for the express purpose of finding a particular bug.

In summary, most ARF errors (84%) were easy to fix, almost all errors that took more
than a few hours to fix were detected after the first 90% of the development cycle, and the
documentation was significantly helpful in fixing errors.

15

D.M. WEISS

Table 7 - Methods of Error Correction
(Reported for 116 of 143 Errors)

Category Number of Errors Percent of
Total Errors

1. Inspection of code 32 23
2. Study of the algorithm 14 10

in the documentation
3. Running test cases 6 4
4. Other 9 6
5. 1.&2. 16 11
6. 1.&3. 2 1

7. 1.&4. 1 1

8. 1.&2.&3. 29 20
9. 1.&2.&3.&4. 7 5

Limitations and Problems

Although it is possible to design repeatable experiments using error analysis as a tool to
evaluate hypotheses, no attempt was made to do so for the ARF. The expense and difficulty of
performing such experiments is a significant limitation on the use of error analysis (or any
other technique involving complex, intensive, human behavior). Our purpose here is not to
describe the design of such experiments, but rather to discuss some limitations and problems of
error analysis in its role as an aid to project managers, system designers, programmers, and oth-
ers. We will also discuss some particular problems encountered with the data collection and
analysis procedures used for the ARF. Because the ARF error analysis project was not
designed as a formal, repeatable experiment, it is hard to compare the results with similar
efforts such as Endres [101. The background of the people involved, the hardware and software
environment used, the application being programmed, and many other factors confound
attempts to draw such comparisons. As noted by Jones [161, even simple comparisons using
parameters such as programmer productivity or error rates must be suspect because of the
different conditions surrounding different projects. We view these difficulties as the principal
limitation of the error analysis technique described here.

One problem for which there is no simple solution is the Hawthorne (or observer) effect
[17]. When project personnel become aware that an aspect of their behavior is being moni-
tored, their behavior will change. If error monitoring is a continuous, long-term activity that is
part of the normal scheme of software development and not associated with evaluation of pro-
grammer performance, this effect may become insignificant. We believe this was the case with
the ARF project. A second significant problem is accuracy of the data. Those who fill out
error-report forms, particularly when they are new to the process, tend to interpret the ques-
tions and categories on the form differently than the designer of the form. (We assume that
the error analyst has some standard set of criteria for categorizing errors.) As a result, all error
reports must be carefully reviewed by an error analyst shortly after they have been completed.
Questions or doubts about the information on the form should be resolved in an interview with
the error reporter. The interview must take place soon enough after the error is observed and
corrected for the error reporter to remember all details of the error. This situation can be com-
plicated if the error committer, error corrector, and error reporter are different people. A

16

NRL REPORT 8268

further problem involved with completion of forms is the amount of overhead involved. Project
managers with tight schedules resent activities that distract the attention of project personnel
from the task at hand. One reason the ARF data are reasonably complete and accurate is that
the project management strongly supported error data collection and analysis. Another problem
is convincing programmers and designers that the error data will not be used against them. This
was not a significant problem on the ARF project for several reasons, including management
support, processing of the error data by a person independent of the ARF, identifying error
reports in the analysis process by number rather than name, informing newly hired project per-
sonnel that completion of error reports was considered part of their job, and high project
morale. Indeed, programmers often delighted in verbally describing to the error analyst all the
gory details of the search for some particularly obscure error. Furthermore, project manage-
ment did not need error data to evaluate performance. Indeed, the project manager was able to
guess which programmers committed the most errors without seeing any error reports, based on
her own estimate of their capabilities.

As in any project involving analysis of data, there was information that was never asked
for, but that would have been useful. As an example, the length of time an error was in the
system could not be calculated because document version numbers and release dates for code
and documentation were not requested and were nowhere consistently maintained. The origin
of some errors was difficult to establish because information concerning the first document or
piece of code in which the error appeared was not requested. We were unable to analyze issues
involving program modification because information about modifications for purposes other
than error correction was not recorded anywhere. These examples underscore the need for
careful planning of data collection before starting to gather data.

Most data concerning issues where little judgment is required to classify the error were
obtained easily and accurately. The techniques used to find and correct errors and the amount
of time (quantized into three categories) required to correct errors fall in this category. Most
analyses concerning the mechanics of error detection and correction could be accomplished
merely by counting check marks on error report forms. Issues requiring greater judgement,
such as the sources of misunderstandings, sometimes required understanding by the error
analyst of the events surrounding the error as well as the reasons for the error. It was con-
sideration of these cases when the error-data-collection process was being designed that
prompted the requirement that error data be collected in conjunction with system development.

In general, all error analyses planned at the beginning of the project were completed.
Other analyses that were discovered to be of interest, such as those described in the preceding,
could not be carried out because the appropriate data had not been collected and could no
longer be obtained, i.e. unplanned, ad hoc data analysis was generally fruitless.

The basic limitations of error analysis as it was used for the ARF project appear to be the
following:

* Unless a repeatable, formal experiment is carefully planned, one cannot expect to per-
form statistical hypothesis testing or to easily compare results between projects

* Data analyses must be carefully planned at the beginning of the project; lost data cannot
be recaptured

17

D.M. WEISS

* Error reports must be processed shortly after they are completed so that questions and
ambiguities in classification may be resolved while the memory of the error is fresh

* The overhead involved in data collection may perturb very tight project schedules.

CONCLUSIONS

We have described here how historical error analysis may be used to evaluate software
development methodologies. The key points of the technique are to design the data collection
scheme prior to collecting data and to collect data in parallel with system development. Several
previous studies, such as the RADC study [8], have used only ad hoc data, resulting in situa-
tions with large numbers of categories and few errors in each category.

Although it does not provide a true experimental evaluation, the technique used for the
ARF project does yield insight into the effects of software development methodologies. The
results of analyzing project errors are useful to project management, designers, programmers,
software engineers, and others. The results may be used as a measure of the effectiveness of
various development methodologies in preventing and detecting software errors, and as a meas-
ure of achievement of some types of project goals.

The ARF error results support the view that the ARF developers met their design objec-
tives with respect to modularization and run-time error detection. Most errors took less than a
few hours to fix. Intermodule interfaces apparently caused few problems, and errors and error
corrections rarely spanned more than one module. More than half of the table access errors
were detected by the run-time error-detection mechanism. The worth, with respect to error
prevention and cost of error correction of the specifications and other documentation and the
quality control rules, cannot be easily estimated. The documentation did seem to be
significantly helpful in correcting errors.

The difficulties involved in conducting large-scale, controlled, software engineering experi-
ments have as yet prevented evaluations of software development methodologies in the
environments where they are often claimed to work best. As a result, software engineers must
depend on less formal techniques that can be used in real working environments to establish
long-term trends. Examples of such techniques 110, 15, 18] already exist in the literature. We
view error analysis as one such technique and feel that more techniques, and many more
results obtained by applying such techniques, are needed.

ACKNOWLEDGMENTS

I would like to thank all participants in the ARF project for their cooperation and patience
in filling out error report forms. Alan Parker particularly was of great help in describing ARF
errors and their causes, and in reviewing the categorizations of all the ARF errors. Drs. V.
Basili, D. Parnas, and J. Shore, and Mr. L. Chmura contributed many helpful suggestions on an
early draft of this report.

REFERENCES

1. C. G. Bell and A. Newell, Computer Structures: Readings and Examples, McGraw-Hill, New
York, 1971.

18

NRL REPORT 8268

2. H. Elovitz, "The Architecture Research Facility: An Experiment in Software Engineering,"
unpublished paper, NRL.

3. D. L. Parnas, "On the Design and Development of Program Families," IEEE Trans. SE-2
(No. 1), 1-9 (Mar.1976).

4. -, "On the Criteria To Be Used in Decomposing Systems into Modules", Commun.
ACM15, (No. 12), 1053-1058, (Dec. 1972).

5. J. McHugh, "FORTRAN Coding Standards for the ARF," NRL Technical Memorandum
5403-457:JMcH:dmf, December 9, 1975.

6. V. Basili and A. Turner, "SIMPL-T, A Structured Programming Language," University of
Maryland Computer Note CN-14, Jan. 1974.

7. BLISS-10 Programmer's Reference Manual, Digital Equipment Corporation, Maynard,
Mass., 1974.

8. G. Craig, W. Hetrick, M. Lipow, T. Thayer, et al., "Software Reliability Study," Rome Air
Development Center Technical Report RADC-TR-74-250, Oct. 1974.

9. S. L. Gerhart and L. Yelowitz, "Observations of Fallibility in Applications of Modern Pro-
gramming Methodologies," IEEE Trans. SE-2 (No. 3), 195-207 (Sept. 1976).

10. A. Endres, "Analysis and Causes of Errors in System Programs," Proc. Intern. Con!f Reli-
able Software, pp. 327-336, Apr. 1975.

11. W. Amory and J. Clapp, A Software Error Classification Methodology, MRT-2648 Vol VII,
The MITRE Corp., Bedford, Mass., June 1973.

12. E. Youngs, "Error Proneness In Programming," Ph.D Thesis, University of North Caro-
lina at Chapel Hill, 1970.

13. P. Wright and P. Barnard, "'Just fill in this form' - A review for designers," Appl.
Ergonomics6.4, 213-220 (1975).

14. W. Howden, Theoretical and Empirical Studies of Program Testing, Proc. 3rd Internatl. Conf
Software Engrg., pp. 305-310, May 1978. Long Beach, Calif. IEEE Computer Society.

15. C. Walston and C. Felix, "A Method of Programming Measurement and Estimation," IBM
Syst. J. 16 (No. 1), 54-73 (1977).

16. C. Jones, "Productivity Measurements," in Proc. GUIDE 44, San Francisco, May 1977.

17. J. Brown, The Social Psychology of Industry, Penguin Books, Baltimore, Md., 1954.

18. V. Basili, M. Zelkowitz, F. McGarry, et al., The Software Engineering Laboratory, Univer-
sity of Maryland Technical Report TR-535, May 1977.

19

Appendix
MODULES OF THE ARF

The main principle used in the modularization of the ARF was information hiding. There
were eight modules in the original design, which are described in the following paragraphs. See
Ref. 2 for a more complete description.

1. The ISP compiler translates ISP source code into low-level, simulatable, target
machine descriptions. The compiler existed before ARF development started, and few exten-
sions were made to it.

2. The ISP compiler postprocessor provides semantic checking and error diagnostic facili-
ties not included in the compiler, but deemed desirable for ARF users.

3. The reformatter program translates the output of the compiler into a set of tables that
can be used to simulate the target machine.

4. The simulator interprets the reformatted compiler output to simulate the target
machine. Programs to be run on the simulated machine are stored on mass storage files and
referenced as needed. The semantics of target machine instruction simulation are contained
solely in the simulator.

5. The command-language interpreter provides the interface to the user. All communica-
tions with the user and interpretation of user requests are concealed in this module.

6. The table access module manages the usage of the tables that describe the components
and the state of the machine being simulated. The representation of these tables is hidden in
this module. All access to the tables is provided by a set of table interface functions, which
belong to the table access module.

7. The paging subsystem provides a mechanism for representing a large target machine
memory when limited memory is available for ARF use. The pager includes facilities for pag-
ing, loading, and saving the tables managed by the table access module. The paging subsystem
was expected to be particularly valuable in implementing the PDP-11 version of the ARF. All
memory mapping of the tables is handled by the paging module.

8. A PDP-10 to PDP-11 communications package was designed to reduce the effort in
producing a PDP-11 version of the ARF. The ISP compiler, postprocessor, and the reformatter
were all designed as PDP-10 programs that would not be moved to the PDP-11. The files pro-
duced as a result of executing those programs would be transmitted over a data link to the
PDP-11 by the communications package. The communications interface between the two
machines would be known only to the communications package. Since a PDP-11 version of the
ARF was not attempted, the communications module was never implemented.

20

